December 26, 2024 08:47 pm (IST)
CERN's LHCb experiment reports observation of exotic pentaquark particles
Geneva, July 14 (IBNS): The LHCb experiment at CERN's Large Hadron Collider on Tuesday reported the discovery of a class of particles known as pentaquarks.
The collaboration has submitted a paper reporting these findings to the journal Physical Review Letters.
“The pentaquark is not just any new particle,” said LHCb spokesperson Guy Wilkinson. “It represents a way to aggregate quarks, namely the fundamental constituents of ordinary protons and neutrons, in a pattern that has never been observed before in over fifty years of experimental searches. Studying its properties may allow us to understand better how ordinary matter, the protons and neutrons from which we’re all made, is constituted.”
Our understanding of the structure of matter was revolutionized in 1964 when American physicist, Murray Gell-Mann, proposed that a category of particles known as baryons, which includes protons and neutrons, are comprised of three fractionally charged objects called quarks, and that another category, mesons, are formed of quark-antiquark pairs. Gell-Mann was awarded the Nobel Prize in physics for this work in 1969.
This quark model also allows the existence of other quark composite states, such as pentaquarks composed of four quarks and an antiquark. Until now, however, no conclusive evidence for pentaquarks had been seen.
LHCb researchers looked for pentaquark states by examining the decay of a baryon known as Λb (Lambda b) into three other particles, a J/ѱ (J-psi), a proton and a charged kaon. Studying the spectrum of masses of the J/ѱ and the proton revealed that intermediate states were sometimes involved in their production. These have been named Pc(4450)+ and Pc(4380)+, the former being clearly visible as a peak in the data, with the latter being required to describe the data fully.
“Benefitting from the large data set provided by the LHC, and the excellent precision of our detector, we have examined all possibilities for these signals, and conclude that they can only be explained by pentaquark states," says LHCb physicist Tomasz Skwarnicki of Syracuse University.
“More precisely the states must be formed of two up quarks, one down quark, one charm quark and one anti-charm quark.”
Earlier experiments that have searched for pentaquarks have proved inconclusive. Where the LHCb experiment differs is that it has been able to look for pentaquarks from many perspectives, with all pointing to the same conclusion. It’s as if the previous searches were looking for silhouettes in the dark, whereas LHCb conducted the search with the lights on, and from all angles. The next step in the analysis will be to study how the quarks are bound together within the pentaquarks.
“The quarks could be tightly bound,” said LHCb physicist Liming Zhang of Tsinghua University, “or they could be loosely bound in a sort of meson-baryon molecule, in which the meson and baryon feel a residual strong force similar to the one binding protons and neutrons to form nuclei.”
The new data that LHCb will collect in LHC run 2 will allow progress to be made on these questions.
Support Our Journalism
We cannot do without you.. your contribution supports unbiased journalism
IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.
Support objective journalism for a small contribution.
Latest Headlines
Elon Musk's SpaceX launches Indian satellite on Falcon 9 rocket
Tue, Nov 19 2024
Elon Musk's SpaceX collaborates with ISRO to launch GSAT-20 communications satellite this week
Sun, Nov 17 2024
ISI Kolkata's Prof Neena Gupta wins Infosys Prize 2024 for her exemplary work in the field of Mathematical Sciences
Fri, Nov 15 2024
My body has changed but I weigh same: Sunita Williams on health rumours after 150 days in space
Thu, Nov 14 2024
Science and Technology Minister Dr Jitendra Singh inaugurates centenary celebrations of iconic 'Bose-Einstein' Statistics
Thu, Nov 14 2024
Exploring the Research on Vialox Peptide
Thu, Oct 24 2024