December 24, 2024 11:24 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
Five soldiers killed, several injured as Army truck falls into Poonch gorge | Allu Arjun quizzed by police in Pushpa 2 stampede case | Wanted Indian drug smuggler killed in the US | Congress leader files complaint against Allu Arjun for 'insulting police' in Pushpa 2: The Rule | Ahead of Jaishankar's US visit, foreign secretary Vikram Misri meets top US diplomats | India refrains from commenting on extradition request for ousted Bengladeshi PM Sheikh Hasina | I don't blame Allu Arjun, ready to withdraw case: Pushpa 2 stampede victim's husband | Indian New Wave Cinema Architect Shyam Benegal dies at age 90 | Cylinder blast at a temple in Karnataka's Hubbali injures nine people | Kuwait PM personally sees off Modi at airport as Indian premier concludes two-day trip

New molecular mechanism revealed for genetic mutations in aggressive cancer cells

| | Oct 13, 2016, at 02:11 am
Birmingham, Oct 12 (IBNS): Scientists at the University of Birmingham have described a previously-unknown molecular mechanism that could lead to the genetic mutations seen in certain types of aggressive cancer cells, involving a cell’s own transcription machinery.

Genetic mutations are fundamental to the spread of cancer cells that form malignant tumours in the body.

They are often caused by ‘replication stress’ within the cell, whereby DNA becomes damaged while it is duplicated. However, the underlying cause of this process has long been a mystery.

In a new study published on Wednesday in Nature Communications, researchers reveal how replication stress and subsequent genetic mutations can be caused by an increase in activity of a cell’s own transcription machinery.

The research shows that in cells with an activated version of the cancer-promoting gene (or ‘oncogene’) H-RasV12, the rate of transcription and protein production is dramatically increased. The resulting RNA can form unusual structures called ‘R-loops’ within the DNA of the cell, which in turn cause DNA damage and replication stress.

Although it was previously suspected that H-RasV12 caused increases in transcription, this study provides the first solid evidence of the mechanism, as well as the first description of the role of this oncogene in R-loop formation.

‘This research is the first to show conclusively that an oncogene-induced boost in gene expression is enough to interfere with DNA replication,’ says lead researcher Dr Eva Petermann, from the University of Birmingham’s Institute of Cancer and Genomic Studies.

‘Our findings help to create a new unified view of the roles of transcription and replication in the process of cancer cell mutations. This is a big step in basic cancer biology, and potentially opens up a whole new area of research into transcription proteins and replication stress.’

A better understanding of replication stress may help improve the efficacy and application of a number of new cancer drugs currently undergoing clinical trials, including AstraZeneca’s ATR and Wee1 inhibitors.

Image:wikimedia commons

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.