December 27, 2024 10:30 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
Congress writes to PM Modi seeking space for building a memorial to Manmohan Singh | Manmohan Singh will be remembered as a kind person, a learned economist, and a leader dedicated to reforms: PM Modi | Russian ambassador to India Denis Alipov grieves Manmohan Singh's demise | Mumbai terror attack shook Manmohan Singh badly, recalls former deputy NSA | I have lost a mentor and guide: Rahul Gandhi writes on Manmohan Singh's demise | Manmohan Singh left strong imprint on our economic policy over years: PM Modi | A rare leader who spoke softly but achieved monumental strides: Gautam Adani mourns Manmohan Singh's death | Instagram influencer and freelance RJ Simran Singh dies by suicide in Gurugram | Anna University sexual assault case: Accused is a DMK worker, claims BJP's Annamalai | Celebrities too responsible for crowd control: Telangana CM Revanth Reddy to Telugu filmdom amid Pushpa 2 stampede row
Earthquake

Seismicity study of Arunachal Himalaya reveals low to moderate earthquakes at 2 crustal depths

| @indiablooms | Jul 25, 2020, at 10:04 pm

New Delhi: The exhumation and growth of the Himalaya is a continuous process that results predominantly from reverse faults in which the rocks on the lower surface of a fault plane move under relatively static rocks on the upper surface, a process called underthrusting of the Indian plate beneath its Eurasian counterpart.

This process keeps modifying the drainage patterns and landforms and is the pivotal reason for causing an immense seismic hazard in the Himalayan mountain belt and adjoining regions, necessitating assessment and characterization of earthquakes in terms of cause, depth and intensity before construction activities are initiated.

The Tuting-Tidding Suture Zone (TTSZ) is a major part of the Eastern Himalaya, where the Himalaya takes a sharp southward bend and connects with the Indo-Burma Range.

This part of the Arunachal Himalaya has gained significant importance in recent times due to the growing need of constructing roads and hydropower projects, making the need for understanding the pattern of seismicity in this region critical.

A study by the Wadia Institute of Himalayan Geology (WIHG) an autonomous institute of the Department of Science & Technology (DST), Government of India, exploring the elastic properties of rocks and seismicity in this easternmost part of India revealed that the area is generating moderate earthquakes at two different depths.

Low magnitude earthquakes are concentrated at 1-15 km depth, and slightly higher greater than 4.0 magnitude earthquakes are mostly generated from 25-35 km depth.

The intermediate-depth is devoid of seismicity and coincides with the zone of fluid/partial melts.

The crustal thickness in this area varies from 46.7 km beneath the Brahmaputra Valley to about 55 km in the higher elevations of Arunachal, with a marginal uplift of the contact that defines the boundary between crust and the mantle technically called the Moho discontinuity.

This, in turn, reveals the underthrusting mechanism of Indian plate in the Tuting-Tidding Suture Zone.

Extremely high Poisson’s ratio was also obtained in the higher parts of the Lohit Valley, indicating the presence of fluid or partial melt at crustal depths.

This detailed assessment of seismicity in this region will be helpful for planning any largescale construction in this region in the future.

The team of scientists led by Dr. Devajit Hazarika installed 11 broadband seismic stations along the Lohit River Valley of Arunachal Himalaya to understand the elastic properties of rocks and seismicity in this easternmost part of India, a study that has been published in the ‘Journal of Asian Earth Sciences’.

In the present study, the WIHG team used both teleseismic (earthquakes that occur more than 1000 km from the measurement site)and local earthquake data with the help of seismometers having a flat velocity response for the frequency range of 0.004-35 Hz. Data were continuously recorded at 20 samples per second, and the Global Positioning System (GPS) receivers were used for time synchronization.

The study which used teleseismic and local earthquake data procured during January 2007-June 2008 has helped map underthrusting in this easternmost part of the country and can not only help plan construction but also improve earthquake preparedness in the area.

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.