December 13, 2024 03:40 (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
UP teenager kills mother, lives with body for 5 days | At least six people including a child killed in Tamil Nadu hospital fire | Amid Atul Subhash row, SC says mere harassment is not enough to prove abetment to suicide | India's D Gukesh becomes youngest ever world champion in chess | Devendra Fadnavis meets PM Modi amid suspense over Maharashtra portfolio allocation | Congress wants to deviate the issue of Sonia Gandhi-George Soros link: JP Nadda | Bengaluru techie suicide: Atul Subhash's family demanded Rs. 10 lakh as dowry leading to my father's death, claims estranged wife | Syria rebels torch tomb of ousted president Bashar al-Assad's father | Donald Trump vows to eliminate birthright citizenship after taking charge | No alliance with Congress in Delhi polls: AAP chief Arvind Kejriwal
Nobel Prize
Photo Courtesy: The Nobel Prize X page

U.S. scientists David Baker and John Jumper and Britain’s Demis Hassabis win Nobel Prize in Chemistry for cracking code of proteins' structure

| @indiablooms | Oct 09, 2024, at 10:57 pm

U.S. scientists David Baker and John Jumper and Britain’s Demis Hassabis have been awarded the Nobel Prize in Chemistry for cracking the code for proteins’ amazing structures.

David Baker has succeeded with the almost impossible feat of building entirely new kinds of proteins.

Demis Hassabis and John Jumper have developed an AI model to solve a 50-year-old problem: predicting proteins’ complex structures.

These discoveries hold enormous potential, read a statement issued by the Nobel Prize Award giving body.

The diversity of life testifies to proteins’ amazing capacity as chemical tools. They control and drive all the chemi­cal reactions that together are the basis of life. Proteins also function as hormones, signal substances, antibodies and the building blocks of different tissues.

“One of the discoveries being recognised this year concerns the construction of spectacular proteins. The other is about fulfilling a 50-year-old dream: predicting protein structures from their amino acid sequences. Both of these discoveries open up vast possibilities,” says Heiner Linke, Chair of the Nobel Committee for Chemistry.

Proteins generally consist of 20 different amino acids, which can be described as life’s building blocks. In 2003, David Baker succeeded in using these blocks to design a new protein that was unlike any other protein.

Since then, his research group has produced one imaginative protein creation after another, including proteins that can be used as pharmaceuticals, vaccines, nanomaterials and tiny sensors.

The second discovery concerns the prediction of protein structures. In proteins, amino acids are linked together in long strings that fold up to make a three-dimensional structure, which is decisive for the protein’s function.

Since the 1970s, researchers had tried to predict protein structures from amino acid sequences, but this was notoriously difficult. However, four years ago, there was a stunning breakthrough.

In 2020, Demis Hassabis and John Jumper presented an AI model called AlphaFold2.

With its help, they have been able to predict the structure of virtually all the 200 million proteins that researchers have identified.

Since their breakthrough, AlphaFold2 has been used by more than two million people from 190 countries.

Among a myriad of scientific applications, researchers can now better understand antibiotic resistance and create images of enzymes that can decompose plastic.

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.