April 25, 2025 07:56 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
Jammu and Kashmir: Top LeT commander Altaf Lalli killed during Bandipora encounter | Supreme Court warns Rahul Gandhi over his remarks against Veer Savarkar | Supreme Court warns Rahul Gandhi over his remarks against Veer Savarkar | Medha Patkar arrested in 24-year-old defamation case by Delhi L-G VK Saxena | J&K: Houses of two local LeT terrorists involved in Pahalgam terror attack demolished | Pakistan opens fire along LoC, Indian Army retaliates amid ongoing tension over Jammu and Kashmir terror attack | 'Full support to govt for any action': Rahul Gandhi after all-party meet on Pahalgam massacre | Indian Navy tests fires medium-range surface-to-air missile in Arabian Sea amid tensions after Pahalgam massacre | Pakistan threatens to suspend all agreements with India, including Simla Pact, after New Delhi's actions | Canada only G7 nation to keep mum on Kashmir terror attack that claimed 26 lives

3 NASA satellites recreate solar eruption in 3-D

| | Mar 11, 2018, at 12:06 am

Washington, Mar 10 (IBNS): The more solar observatories, the merrier: Scientists have developed new models to see how shocks associated with coronal mass ejections, or CMEs, propagate from the Sun — an effort made possible only by combining data from three NASA satellites to produce a much more robust mapping of a CME than any one could do alone.

Much the way ships form bow waves as they move through water, CMEs set off interplanetary shocks when they erupt from the Sun at extreme speeds, propelling a wave of high-energy particles. These particles can spark space weather events around Earth, endangering spacecraft and astronauts.

Understanding a shock’s structure — particularly how it develops and accelerates — is key to predicting how it might disrupt near-Earth space.

But without a vast array of sensors scattered through space, these things are impossible to measure directly. Instead, scientists rely upon models that use satellite observations of the CME to simulate the ensuing shock’s behavior.

The scientists — Ryun-Young Kwon, a solar physicist at George Mason University in Fairfax, Virginia, and Johns Hopkins University Applied Physics Laboratory, or APL, in Laurel, Maryland, and APL astrophysicist Angelos Vourlidas — pulled observations of two different eruptions from three spacecraft: ESA/NASA’s Solar and Heliospheric Observatory, or SOHO, and NASA’s twin Solar Terrestrial Relations Observatory, or STEREO, satellites. One CME erupted in March 2011 and the second, in February 2014.

The scientists fit the CME data to their models — one called the “croissant” model for the shape of nascent shocks, and the other the “ellipsoid” model for the shape of expanding shocks — to uncover the 3-D structure and trajectory of each CME and shock.

Each spacecraft’s observations alone weren’t sufficient to model the shocks. But with three sets of eyes on the eruption, each of them spaced nearly evenly around the Sun, the scientists could use their models to recreate a 3-D view.

Their work confirmed long-held theoretical predictions of a strong shock near the CME nose and a weaker shock at the sides.

In time, shocks travel away from the Sun, and thanks to the 3-D information, the scientists could reconstruct their journey through space.

The modeling helps scientists deduce important pieces of information for space weather forecasting — in this case, for the first time, the density of the plasma around the shock, in addition to the speed and strength of the energized particles.

All of these factors are key to assessing the danger CMEs present to astronauts and spacecraft. Their results are summarized in a paper published in the Journal of Space Weather and Space Climate published on Feb. 13, 2018.


Image: NASA


 

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.
Close menu