February 10, 2026 07:56 pm (IST)
Follow us:
facebook-white sharing button
twitter-white sharing button
instagram-white sharing button
youtube-white sharing button
Bangladesh poll manifestos mirror India’s welfare schemes as BNP, Jamaat bet big on women, freebies | Drama ends: Pakistan makes U-turn on India boycott, to play T20 World Cup clash as per schedule | ‘Won’t allow any impediment in SIR’: Supreme Court pulls up Mamata govt over delay in sharing officers’ details | India-US trade deal: ‘Negotiations always two-way’, says Amul MD amid farmers’ concerns | Khamenei breaks 37-year-old ritual for first time amid escalating Iran-US tensions | India must push for energy independence amid global uncertainty: Vedanta chairman Anil Agarwal | Kanpur horror: Lamborghini driven by businessman’s son rams vehicles, injures six | ‘Namaste Trump beat Howdy Modi’: Congress slams PM Over India-US trade deal | Historic India-US trade pact: Tariffs cut, $500B market opportunity unlocked! | Big call from RBI: Repo rate stays at 5.25%, neutral stance continues

Scientists make research “jelly” grow more like biological tissues

| | Dec 31, 2017, at 12:21 am

Singapore, Dec 30 (IBNS): Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University (CMU) have found a way to direct the growth of hydrogel, a jelly-like substance, to mimic plant or animal tissue structure and shapes. 

The team’s findings, published in Proceedings of the National Academy of Sciences today, suggest new applications in areas such as tissue engineering and soft robotics where hydrogel is commonly used. The team has also filed a patent at CMU and NTU.

In nature, plant or animal tissues are formed as new biomass is added to existing structures. Their shape is the result of different parts of those tissues growing at different rates.

Mimicking this behaviour of biological tissues in nature, the research team comprising CMU scientists Changjin Huang, David Quinn, K. Jimmy Hsia and NTU President-designate Prof Subra Suresh, showed that through manipulation of oxygen concentration, one can pattern and control the growth rate of hydrogels to create the desired complex 3D shapes.

The team found that higher oxygen concentrations slow down the cross-linking of chemicals in the hydrogel, inhibiting growth in that specific area.

Mechanical constraints such as soft wire, or glass substrate which chemically binds with the gel, can also be used to manipulate the self-assembly and formation of hydrogels into complex structures.

Such complex organ structures are essential for performing specialised body functions. For example, humans’ small intestines are covered with microscopic folds known as villi, which increase the gut’s surface area for more efficient absorption of food nutrients.

The new technique differs from previous methods which create 3D structures by adding/printing or subtracting layers of materials. This technique, however, relies on continuous polymerisation of monomers inside the porous hydrogel, similar to the process of enlargement and proliferation of living cells in organic tissues. Most living systems adopt a continuous growth model, so the new technique which mimics this approach will potentially be a powerful tool for researchers to study growth phenomena in living systems.

“Greater control of the growth and self-assembly of hydrogels into complex structures offers a range of possibilities in medical and robotics fields. One field that stands to benefit is tissue engineering, where the goal is to replace damaged biological tissues, such as in knee repairs or in creating artificial livers,” said Professor Subra Suresh, who will be assuming office as the NTU President on 1 January 2018.

Growth-controlled and structure-controlled hydrogels are also useful in the study and development of flexible electronics and soft robotics, providing increased flexibility compared to conventional robots, and mimicking how living organisms move and react to their surroundings. 

Image: Nanyang Technological University website

Support Our Journalism

We cannot do without you.. your contribution supports unbiased journalism

IBNS is not driven by any ism- not wokeism, not racism, not skewed secularism, not hyper right-wing or left liberal ideals, nor by any hardline religious beliefs or hyper nationalism. We want to serve you good old objective news, as they are. We do not judge or preach. We let people decide for themselves. We only try to present factual and well-sourced news.

Support objective journalism for a small contribution.